Planning ahead: Predictable switching recruits task‐active and resting‐state networks

Author:

Kurtin Danielle L.12ORCID,Araña‐Oiarbide Garazi2,Lorenz Romy345ORCID,Violante Ines R.1ORCID,Hampshire Adam2

Affiliation:

1. NeuroModulation Lab, Department of Psychology, Faculty of Health and Medical Sciences University of Surrey Guildford UK

2. Department of Brain Sciences, Faculty of Medicine Imperial College London London UK

3. MRC Cognition and Brain Sciences Unit University of Cambridge Cambridge UK

4. The Poldrack Lab Stanford University Stanford California USA

5. Department of Neurophysics Max‐Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany

Abstract

AbstractSwitching is a difficult cognitive process characterised by costs in task performance; specifically, slowed responses and reduced accuracy. It is associated with the recruitment of a large coalition of task‐positive regions including those referred to as the multiple demand cortex (MDC). The neural correlates of switching not only include the MDC, but occasionally the default mode network (DMN), a characteristically task‐negative network. To unpick the role of the DMN during switching we collected fMRI data from 24 participants playing a switching paradigm that perturbed predictability (i.e., cognitive load) across three switch dimensions—sequential, perceptual, and spatial predictability. We computed the activity maps unique to switch vs. stay trials and all switch dimensions, then evaluated functional connectivity under these switch conditions by computing the pairwise mutual information functional connectivity (miFC) between regional timeseries. Switch trials exhibited an expected cost in reaction time while sequential predictability produced a significant benefit to task accuracy. Our results showed that switch trials recruited a broader activity map than stay trials, including regions of the DMN, the MDC, and task‐positive networks such as visual, somatomotor, dorsal, salience/ventral attention networks. More sequentially predictable trials recruited increased activity in the somatomotor and salience/ventral attention networks. Notably, changes in sequential and perceptual predictability, but not spatial predictability, had significant effects on miFC. Increases in perceptual predictability related to decreased miFC between control, visual, somatomotor, and DMN regions, whereas increases in sequential predictability increased miFC between regions in the same networks, as well as regions within ventral attention/ salience, dorsal attention, limbic, and temporal parietal networks. These results provide novel clues as to how DMN may contribute to executive task performance. Specifically, the improved task performance, unique activity, and increased miFC associated with increased sequential predictability suggest that the DMN may coordinate more strongly with the MDC to generate a temporal schema of upcoming task events, which may attenuate switching costs.

Funder

Biotechnology and Biological Sciences Research Council

Engineering and Physical Sciences Research Council

NIHR Imperial Biomedical Research Centre

University of Surrey

Wellcome Trust

Publisher

Wiley

Subject

Neurology (clinical),Neurology,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3