Default Mode Network activation at task switches reflects mental task-set structure

Author:

Zhou Ashley X.ORCID,Duncan John,Mitchell Daniel J.ORCID

Abstract

AbstractRecent findings challenge traditional views of the Default Mode Network (DMN) as purely task-negative or self-oriented, showing increased DMN activity during demanding switches between externally-focused tasks (Crittenden et al., 2015; Smith et al., 2018; Zhou et al., 2024). However, it is unclear what modulates the DMN at switches, with transitions within a stimulus domain activating DMN regions in some studies but not others. Differences in the number of tasks suggest that complexity or structure of the set of tasks may be important. In this fMRI study, we examined whether the DMN’s response to task switches depends on the complexity of the active set of tasks, manipulated by the number of tasks in a run, or abstract task groupings based on instructional order. Core DMN activation at task switches was unaffected by the number of currently relevant tasks. Instead, it depended on the order in which groups of tasks had been learnt. Multivariate decoding revealed that Core DMN hierarchically represents individual tasks, task domains, and higher-order task groupings based on instruction order. We suggest that, as the complexity of instructions increases, rules are increasingly organized into higher-level chunks, and Core DMN activity is highest at switches between chunks.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3