High‐Brightness GaN‐Based Blue Light‐Emitting Diodes Using AlON Buffer Layer on 4 In.‐Patterned Sapphire Substrate: Low‐Dislocation‐Defect Epitaxy, Growth Mechanisms, and Higher Device Performance

Author:

Li Minghang1,Chen Wencheng1,Zhang Jiasheng2,Bai Shuming2,Zeng Jiarong2,Zhu Xueliang2,Zhang Kelvin H. L.3,Cheng Qijin1ORCID,Ostrikov Kostya (Ken)4

Affiliation:

1. School of Electronic Science and Engineering Xiamen University Xiamen 361005 China

2. Gallium Nitride Epitaxy Department QuanZhou San'an Optoelectronic Technology Co., Ltd. QuanZhou 362300 China

3. State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China

4. School of Chemistry and Physics and QUT Centre for Materials Science Queensland University of Technology (QUT) Brisbane QLD 4000 Australia

Abstract

AlN is a common buffer layer in GaN‐based light emitting diode (LED) devices. However, application of AlN on industry‐relevant patterned sapphire substrate (PSS) causes unwanted screw dislocations in the epitaxial layer during GaN nucleation. Industry experience suggests that AlON buffer layer improves the quality of GaN epitaxial layer, but the low‐dislocation‐defect epitaxy mechanisms remain unclear. Herein, high‐brightness GaN‐based blue LEDs with the sputtered AlON buffer layer on industry‐grade four‐inch PSS is demonstrated. The effect of oxygen addition to AlN is revealed by growing GaN epitaxial layers on AlON buffer layers with different oxygen contents and testing these GaN layers in LED devices. Compared with conventional AlN, our AlON buffer layer reduces the density of screw dislocations, thereby improving the quality of the GaN epitaxial layers and the performance of GaN‐based LEDs. These insights allow the explanation of the growth mechanisms of GaN on PSS with AlN and AlON buffer layers and can guide the development of next‐generation optoelectronic technologies.

Funder

Natural Science Foundation of Fujian Province

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3