Asymmetric Domain Nucleation from Dislocation Core in Barium Titanate: Molecular Dynamics Simulation Using Machine‐Learning Potential through Active Learning

Author:

Deguchi Genki1,Kobayashi Ryo1ORCID,Azuma Hikaru1ORCID,Ogata Shuji1ORCID,Uranagase Masayuki1ORCID,Spreafico Samuele2

Affiliation:

1. Department of Physical Science and Engineering Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya Aichi 466-8555 Japan

2. Department of Chemistry and Pharmacy Friedrich Alexander University Erlangen-Nürnberg Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany

Abstract

Barium titanate (BaTiO3) is a ferroelectric material without toxic elements, whose ferroelectric properties such as permittivity, coercive field, and spontaneous polarization are affected by the nucleation of domains of reversed polarization and the motion of domain walls. Dislocations can act as obstacles to domain‐wall migration or as active sites for domain nucleation. Thus, studies are conducted on the utilization of dislocations to improve the ferroelectric properties of BaTiO3. However, the atomistic mechanism of domain nucleation around the dislocation core is still unclear. In this article, a machine learning (ML) potential is developed to study the influence of dislocations on domain nucleation. The potential is trained using an active‐learning approach to ensure accuracy in the bulk properties of the ferroelectric and paraelectric phases, as well as in the dislocation core structures in BaTiO3. Molecular dynamics simulations using the ML potential show that the influence of dislocations on polarization reversal depends on the directional relationship between the external electric field and the dislocation. Furthermore, strong local polarizations exist surrounding the dislocation core, owing to vacancies in the core. These polarizations can act as both domain nucleation sites and obstacles for domain migration when ordered along the dislocation line.

Funder

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3