Affiliation:
1. Department of Entomology University of Minnesota St Paul Minnesota USA
2. Department of Entomology and Plant Pathology North Carolina State University Raleigh North Carolina USA
3. Department of Biological Sciences Rutgers University Newark New Jersey USA
4. Biodiversity and Geosciences Program Queensland Museum South Brisbane Queensland Australia
5. Department of Entomology University of Wisconsin Madison Wisconsin USA
Abstract
AbstractDecaying wood, while an abundant and stable resource, presents considerable nutritional challenges due to its structural rigidity, chemical recalcitrance, and low nitrogen content. Despite these challenges, certain insect lineages have successfully evolved saproxylophagy (consuming and deriving sustenance from decaying wood), impacting nutrient recycling in ecosystems and carbon sequestration dynamics. This study explores the uneven phylogenetic distribution of saproxylophagy across insects and delves into the evolutionary origins of this trait in disparate insect orders. Employing a comprehensive analysis of gut microbiome data, from both saproxylophagous insects and their non‐saproxylophagous relatives, including new data from unexplored wood‐feeding insects, this Hypothesis paper discusses the broader phylogenetic context and potential adaptations necessary for this dietary specialization. The study proposes the “Detritivore‐First Hypothesis,” suggesting an evolutionary pathway to saproxylophagy through detritivory, and highlights the critical role of symbiotic gut microbiomes in the digestion of decaying wood.