Shifts of arbuscular mycorrhizal fungal functioning along a simulated nitrogen deposition gradient

Author:

Wang Jian12ORCID,Yang Chenxi13,Zhang Haiou2,Chen Tianqing123ORCID

Affiliation:

1. Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd. Xi'an China

2. Key Laboratory of Degraded and Unused Land Consolidation Engineering, The Ministry of Nature and Resources Xi'an China

3. Shaanxi Provincial Land Engineering Construction Group Co., Ltd. Xi'an China

Abstract

AbstractThe deposition of atmospheric nitrogen can significantly boost the amount of nitrogen available in various ecosystems, potentially altering the mutualistic association between arbuscular mycorrhizal fungi (AMF) and their host plants. Nevertheless, the precise mechanisms and the degree to which externally induced nitrogen‐related changes in AMF functionality might impact Sorghum bicolor (L.) Moench, a plant known for its high mycorrhizal colonization, remains unclear. In this study, the mycorrhizal response affected by environmental N enrichment was addressed by conducting a glasshouse experiment, and four fertilization treatments (N1, N2, N3, and N4, 0, 15, 30, and 60 kg N hm−1 a−1, respectively) were used to simulate N deposition differences over the mycorrhizal response. The changes in mycorrhizal colonization and plant variables during different AMF and N fertilizer applications were investigated. When the gradient's nitrogen levels increased, the mycorrhizal growth response and mycorrhizal nitrogen response showed a pattern of first dropping and then increasing. N‐induced changes in the mycorrhizal response were associated with vesicular colonization, arbuscular colonization, and root‐length colonization. The variation in the mycorrhizal response over the N concentration gradient highlights the critical role of AMF in agroecosystems.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3