Improved Drought Tolerance by AMF Inoculation in Maize (Zea mays) Involves Physiological and Biochemical Implications

Author:

Begum Naheeda,Ahanger Muhammad Abass,Su Yunyun,Lei Yafang,Mustafa Nabil Sabet A.,Ahmad ParvaizORCID,Zhang Lixin

Abstract

The role of arbuscular mycorrhizal fungus (AMF, Glomus versiforme) in amelioration of drought-induced effects on growth and physio-biochemical attributes in maize (Zea mays L.) was studied. Maize plants were exposed to two drought regimes, i.e., moderate drought (MD) and severe drought (SD), with and without AMF inoculation. Drought at both levels reduced plant height, and chlorophyll and carotenoid content, thereby impeding photosynthesis. In addition, drought stress enhanced the generation of toxic reactive oxygen species (ROS), including H2O2, resulting in membrane damage reflected as increased electrolyte leakage and lipid peroxidation. Such negative effects were much more apparent under SD conditions that those of MD and the control, however, AMF inoculation significantly ameliorated the deleterious effects of drought-induced oxidative damage. Under control conditions, inoculation of AMF increased growth and photosynthesis by significantly improving chlorophyll content, mineral uptake and assimilation. AMF inoculation increased the content of compatible solutes, such as proline, sugars and free amino acids, assisting in maintaining the relative water content. Up-regulation of the antioxidant system was obvious in AMF-inoculated plants, thereby mediating quick alleviation of oxidative effects of drought through elimination of ROS. In addition, AMF mediated up-regulation of the antioxidant system contributed to maintenance of redox homeostasis, leading to protection of major metabolic pathways, including photosynthesis, as observed in the present study. Total phenols increased due to AMF inoculation under both MD and SD conditions. The present study advocates the beneficial role of G. versiforme inoculation in maize against drought stress.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3