Enhancing anticorrosive performance of epoxy‐based ZnO nanocomposite coatings via 3‐(trimethoxysilyl)propyl methacrylate modification

Author:

Dam Xuan Thang1,Dao Phi Hung2ORCID,Nguyen Anh Hiep2,Pham Thi Thu Giang1,Nguyen Thi Huong1,Nguyen Thuy Chinh23ORCID,Ly Thi Ngoc Lien23,Thai Hoang23ORCID

Affiliation:

1. Faculty of Chemical Technology Hanoi University of Industry (HaUI) Hanoi Vietnam

2. Institute for Tropical Technology Vietnam Academy of Science and Technology Hanoi Vietnam

3. Graduate University of Science and Technology Vietnam Academy of Science and Technology Hanoi Vietnam

Abstract

AbstractThe influence of 3‐(trimethoxysilyl)propyl methacrylate (TMSPM) on the properties of epoxy‐based ZnO nanocomposite coatings was investigated, considering its impact on both modified ZnO nanoparticles (NPs) and epoxy resin matrix. FTIR analysis revealed that TMSPM‐modified epoxy resin (mEP) exhibited lower hydroxyl group and epoxy group content compared to the initial epoxy resin (EP). Furthermore, the obtained results demonstrated that epoxy‐based coatings incorporating modified ZnO NPs (m‐ZnO NPs) displayed superior mechanical properties compared to those of the sample filled with the unmodified ZnO NPs (u‐ZnO NPs). However, the mechanical properties of epoxy‐based coatings loaded with m‐ZnO NPs were found to be lower than those of coatings comprising mEP resin and m‐ZnO NPs. The arrangement of anticorrosion performance of coatings followed a similar pattern. SEM analysis of the cross‐cut surface revealed better dispersion of m‐ZnO NPs compared to the u‐ZnO NPs, although small gaps were observed among the m‐ZnO NPs and the epoxy matrix. The SEM images of coatings based on mEP and m‐ZnO NPs indicated a tighter structure. This structural characteristic is considered the main reason for the highest anticorrosion performance observed in the investigated coatings incorporating both mEP and m‐ZnO NPs.

Funder

Vietnam Academy of Science and Technology

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3