3D‐printed degradable hydroxyapatite bioactive ceramics for skull regeneration

Author:

Gui Xingyu1,Zhang Boqing1,Su Zixuan1,Zhou Zhigang2,Dong Zhihong3,Feng Pin4,Fan Chen4,Liu Ming2,Kong Qingquan24,Zhou Changchun1ORCID,Fan Yujiang1,Zhang Xingdong1

Affiliation:

1. National Engineering Research Center for Biomaterials, College of Biomedical Engineering Sichuan University Chengdu China

2. Department of Orthopedics West China Hospital, Sichuan University Chengdu China

3. School of Mechanical Engineering Chengdu University Chengdu China

4. Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.) Chengdu China

Abstract

AbstractHydroxyapatite (HA) bioceramics have been extensively employed as bone tissue scaffolds owing to their biodegradability and osteoinductivity. In our work, HA, a significant component of natural bone tissue used as the raw material to produce porous scaffolds employing three‐dimensional (3D)‐printing technology. Physical and chemical properties, porosity, and compression resistance of the scaffolds were investigated in vitro. The scaffold was confirmed to have a large number of interconnected pore structures on the surface and inside HA scaffolds showed good cell compatibility and cell adhesion in cell text. To analyze the effect of the scaffold on bone repair and regeneration in vivo, the large‐size defect of beagle skull was repaired with a 3D printing group and an autologous bone group (ABG) for 8 months. Images and histological analysis of the 3D printing group indicated better integration with adjacent tissues. However, there were obvious gaps in the ABG, which indicates weak bone regeneration ability of this group due to unmatched implant dimension. Immunohistochemistry and immunofluorescence results showed that 3D‐printed scaffolds had a highly vascularized structure. This study indicates that 3D‐printed bioceramics scaffolds that are osteoinductivity and biodegradable have great potential in maxillofacial bone regeneration.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3