Affiliation:
1. Department of Food Science University of Copenhagen Copenhagen Denmark
2. Front End Innovation FOSS Analytical A/S Hillerød Denmark
Abstract
ABSTRACTFluorescence spectroscopy has been applied for analysis of complex samples, such as food and beverages. Parallel factor analysis (PARAFAC) is a well‐known decomposition method for fluorescence excitation–emission matrices (EEMs). When the complexity of the system increases, it becomes considerably more difficult to determine the optimal number of PARAFAC components, especially when the fluorophores of the system are unknown. The two commonly applied diagnostics, core consistency and split‐half analysis, appear to underestimate the model complexity due to covarying components and local minima, respectively. As a more robust alternative, we propose a resampling approach with multiple initializations and submodel comparisons for estimating the optimal number of PARAFAC components in complex data.