Affiliation:
1. School of Resource & Environment of Anhui Agricultural University Key Laboratory of Agri‐food Safety of Anhui Province Hefei China
2. State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology Anhui Agricultural University Hefei China
3. Department of Molecular Biosciences and Bioengineering University of Hawaii at Manoa Honolulu HI USA
Abstract
BackgroundThiamethoxam (TMX) is insecticidal, but also can trigger physiological and metabolic reactions of plant cycles. The objective of this work was to evaluate the physiological and metabolic effect of TMX on tea plants and its potential benefits.ResultsIn this study, dose of TMX (0.09, 0.135 and 0.18 kg a.i./ha) were tested. Except for peroxidase (POD) and glutathione S‐transferase (GST), chlorophyll, carotenoid, catalase (CAT) and malondialdehyde (MDA) were significantly affected compared with the controls. The CAT activity was increased by 3.38, 1.71, 2.91 times, respectively, under three doses of TMX treatment. The metabolic response between TMX treatment and control groups on the third day was compared using a widely targeted metabolomics. A total of 97 different metabolites were identified, including benzenoids, flavonoids, lipids and lipid‐like molecules, organic acids and derivatives, organic nitrogen compounds, organic oxygen compounds, organoheterocyclic compounds, phenylpropanoids and polyketides, and others. Those metabolites were mapped on the perturbed metabolic pathways. The results demonstrated that the most perturbation occurred in flavone and flavonol biosynthesis. The beneficial secondary metabolites luteolin and kaempferol were upregulated 1.46 and 1.31 times respectively, which protect plants from biotic and abiotic stresses. Molecular docking models suggest interactions between TMX and flavonoid 3‐O‐glucosyltransferase.ConclusionThiamethoxam spray positively promoted the physiological and metabolic response of tea plants. And this work also provided the useful information of TMX metabolism in tea plants as well as rational application of insecticides. © 2023 Society of Chemical Industry.
Funder
U.S. Department of Agriculture
Subject
Insect Science,Agronomy and Crop Science,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献