CircFN1 promotes acute myeloid leukemia cell proliferation and invasion but refrains apoptosis via miR‐1294/ARHGEF10L axis

Author:

Wang Sheng1,Zhang Bang‐Shuo1,Yang Yi1,Fu Lin‐Lin1ORCID

Affiliation:

1. Department of Hematology Three Gorges Hospital Affiliated to Chongqing University Chongqing City China

Abstract

AbstractPrevious studies have proved circFN1 is highly expressed in acute myeloid leukemia (AML) patients and AML cell lines. This study aims to investigate the impact of circFN1 on AML and its mechanism. Via real‐time quantitative PCR to detect circFN1, miR‐1294, ARHGEF10L expressions in clinical plasma samples and AML cell lines, AML cells were cultured in vitro and transfected with si‐circFN1, pcDNA3.1‐circFN1, and si‐ARHGEF10L, respectively, or co‐transfected pcDNA3.1‐circFN1 + miR‐1294 mimic and pcDNA3.1‐circFN1 + si‐ARHGEF10L. Using dual luciferase reporter experiment to detect the relationship between circFN1 and miR‐1294, as well as miR‐1294 and ARHGEF10L. CCK‐8 was used to detect cell proliferation, Transwell to cell invasion, TUNEL staining and flow cytometry to detect cell apoptosis, RT‐qPCR to circFN1 RNA, miR‐1294, and ARHGEF10L expression levels in HL‐60 cells, and western blot to ARHGEF10L protein expression level in HL‐60 cells. We found highly expressed circFN1 and ARHGEF10L, as well as low‐expressed miR‐1294 in AML patients and AML cell lines. In contrast to si‐NC group, si‐circFN1 group could signally inhibit HL‐60 cell proliferation and migration, but promote cell apoptosis; compared with mimic NC group, miR‐1294 mimic group could visually inhibit HL‐60 cell proliferation and migration, but promote cell apoptosis. miR‐1294 was the target of circFN1, and ARHGEF10L was the target of miR‐1294. Over‐expressing miR‐1294 or silencing ARHGEF10L could signally inhibit circFN1 promoting HL‐60 cell proliferation and migration and repressing cell apoptosis. circFN1 promotes proliferation and invasion of AML cell and represses cell apoptosis via regulating miR‐1294/ARHGEF10L axis, which provides new insight for molecular targeted‐treatment for AML.

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3