Abstract
In this paper, we first define the notion of $\mathcal{F}$-cosmall quotient for an additive exact substructure $\mathcal{F}$ of an exact structure $\mathcal{E}$ in an additive category $\mathcal{A}$. We show that every $\mathcal{F}$-cosmall quotient is right minimal in some cases. We also give the definition of $\mathcal{F}$-superfluous quotient and we relate it the approximation of modules. As an application, we investigate our results in a pure-exact substructure $\mathcal{F}$.
Publisher
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics
Reference12 articles.
1. Auslander, M., Rieten, I., Smalø S.O., Represantation Theory of Artin Algebras Volume 36 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1995.
2. Bühler, T., Exact categories, Expo. Math., 28(1) (2010), 1–69.
3. Cortes-Izurdiaga, M., Guil Asensio, P.A., Keskin Tütüncü D., Srivastava, A.K., Endomorphism rings via minimal morphisms, Mediterr. J. Math., 18(152) (2021), 16 pages. https://doi.org/10.1007/s00009-021-01802-9
4. Cortes-Izurdiaga, M., Guil Asensio, P.A., Kaleboğaz, B., Srivastava, A.K., Ziegler partial morphisms in additive exact categories, Bull. Math. Sci., 10(3) 2050012 (2020), 37 pages.
https://doi.org/10.1142/S1664360720500125
5. Fieldhouse, D. J., Pure theories, Math. Ann., 184 (1969), 1-18.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Finitely-cosmall Quotients;Sakarya University Journal of Science;2023-02-28