Affiliation:
1. Hacettepe Üniversitesi
Abstract
In this paper, we first define the notion of finitely-cosmall quotient (singly-cosmall quotient) morphisms. Then we give a characterization of this new concept. We show that an epimorphism p:Y→U is a finitely-cosmall quotient (singly-cosmall quotient) if and only if for any right R-module Z any morphism g:Z→Y such that pg is a finitely-copartial isomorphism (singly-copartial isomorphism) from Z to Y with codomain U is a finitely (singly) split epimorphism. We also investigate the relation between pure-cosmall quotient and finitely-cosmall quotient (singly-cosmall quotient) morphisms. We prove that over a right Noetherian ring R, an epimorphism p:Y→U is a pure-cosmall quotient morphism if and only if p is a finitely-cosmall quotient (singly-cosmall quotient) morphism. Moreover, we obtain an example of right minimal morphisms by using finitely-cosmall quotient (singly-cosmall quotient) morphisms.
Publisher
Sakarya University Journal of Science
Reference15 articles.
1. [1] M. Ziegler, “Model theory of modules”, Annals of Pure Applied Logic, vol. 26, pp. 149-213, 1984.
2. [2] E. Monari Martinez, “On pure-injective modules”, in Abelian Groups and Modules (Udine), CISM Courses and Lectures, vol. 287 (Springer, Vienna), pp. 383–393, 1984.
3. [3] M. Cortés-Izurdiaga, P. A. Guil Asensio, B. Kaleboğaz, A. K. Srivastava, “Ziegler partial morphisms in additive exact categories” Bulletin of Mathematical Sciences, vol. 10, no.3, 2050012, 2020.
4. [4] B. Kaleboğaz, “F-copartial morphisms”, accepted in Bulletin of the Malaysian Mathematical Sciences Society.
5. [5] G. Azumaya, “Finite splitness and Finite Projectivity”, Journal of Algebra, vol. 106, pp. 114-134, 1987.