Learning the Effect of Registration Hyperparameters with HyperMorph

Author:

Hoopes Andrew1ORCID,Hoffmann Malte12ORCID,Greve Douglas N.12,Fischl Bruce123ORCID,Guttag John3ORCID,Dalca Adrian V.123ORCID

Affiliation:

1. Massachusetts General Hospital

2. Harvard Medical School

3. Massachusetts Institute of Technology

Abstract

We introduce HyperMorph, a framework that facilitates efficient hyperparameter tuning in learning-based deformable image registration. Classical registration algorithms perform an iterative pair-wise optimization to compute a deformation field that aligns two images. Recent learning-based approaches leverage large image datasets to learn a function that rapidly estimates a deformation for a given image pair. In both strategies, the accuracy of the resulting spatial correspondences is strongly influenced by the choice of certain hyperparameter values. However, an effective hyperparameter search consumes substantial time and human effort as it often involves training multiple models for different fixed hyperparameter values and may lead to suboptimal registration. We propose an amortized hyperparameter learning strategy to alleviate this burden by learning the impact of hyperparameters on deformation fields. We design a meta network, or hypernetwork, that predicts the parameters of a registration network for input hyperparameters, thereby comprising a single model that generates the optimal deformation field corresponding to given hyperparameter values. This strategy enables fast, high-resolution hyperparameter search at test-time, reducing the inefficiency of traditional approaches while increasing flexibility. We also demonstrate additional benefits of HyperMorph, including enhanced robustness to model initialization and the ability to rapidly identify optimal hyperparameter values specific to a dataset, modality, task, or even anatomical region, all without the need to retrain models. We make our code publicly available at <a href='http://hypermorph.voxelmorph.net'>http://hypermorph.voxelmorph.net</a>

Publisher

Machine Learning for Biomedical Imaging

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Boosting Skull-Stripping Performance for Pediatric Brain Images;2024 IEEE International Symposium on Biomedical Imaging (ISBI);2024-05-27

2. EPDiff-JF-Net: Adjoint Jacobi Fields for Diffeomorphic Registration Networks;2024 IEEE International Symposium on Biomedical Imaging (ISBI);2024-05-27

3. Two-step registration of rigid and non-rigid MR-iUS for brain shift compensation using transfer learning;2024 20th CSI International Symposium on Artificial Intelligence and Signal Processing (AISP);2024-02-21

4. Nonlinear Registration of Brain Magnetic Resonance Images with Cross Constraints of Intensity and Structure;Computers, Materials & Continua;2024

5. MMORF—FSL’s MultiMOdal Registration Framework;Imaging Neuroscience;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3