MMORF—FSL’s MultiMOdal Registration Framework

Author:

Lange Frederik J.1,Arthofer Christoph1,Bartsch Andreas2,Douaud Gwenaëlle1,McCarthy Paul1,Smith Stephen M.1,Andersson Jesper L. R.1

Affiliation:

1. Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom

2. Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany

Abstract

Abstract We present MMORF—FSL’s MultiMOdal Registration Framework—a newly released nonlinear image registration tool designed primarily for application to magnetic resonance imaging (MRI) images of the brain. MMORF is capable of simultaneously optimising both displacement and rotational transformations within a single registration framework by leveraging rich information from multiple scalar and tensor modalities. The regularisation employed in MMORF promotes local rigidity in the deformation, and we have previously demonstrated how this effectively controls both shape and size distortion, leading to more biologically plausible warps. The performance of MMORF is benchmarked against three established nonlinear registration methods—FNIRT, ANTs, and DR-TAMAS—across four domains: FreeSurfer label overlap, diffusion tensor imaging (DTI) similarity, task-fMRI cluster mass, and distortion. The evaluation is based on 100 unrelated subjects from the Human Connectome Project (HCP) dataset registered to the Oxford-MultiModal-1 (OMM-1) multimodal template via either the T1w contrast alone or in combination with a DTI/DTI-derived contrast. Results show that MMORF is the most consistently high-performing method across all domains—both in terms of accuracy and levels of distortion. MMORF is available as part of FSL, and its inputs and outputs are fully compatible with existing workflows. We believe that MMORF will be a valuable tool for the neuroimaging community, regardless of the domain of any downstream analysis, providing state-of-the-art registration performance that integrates into the rich and widely adopted suite of analysis tools in FSL.

Publisher

MIT Press

Reference69 articles.

1. A geometric analysis of diffusion tensor measurements of the human brain;Alexander;Magnetic Resonance in Medicine,2000

2. Spatial transformations of diffusion tensor magnetic resonance images;Alexander;IEEE Transactions on Medical Imaging,2001

3. Raincloud plots: A multi-platform tool for robust data visualization;Allen;Wellcome Open Research,2021

4. Andersson, J. L. R., Jenkinson, M., & Smith, S. M. (2007). Non-linear registration aka spatial normalisation. Technical Report June. https://www.fmrib.ox.ac.uk/datasets/techrep/tr07ja2/tr07ja2.pdf

5. High resolution nonlinear registration with simultaneous modelling of intensities;Andersson;bioRxiv,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3