Direct, differential-equation-based in-vitro–in-vivo correlation (IVIVC) method

Author:

Buchwald Peter1

Affiliation:

1. IVAX Research, Inc., 4400 Biscayne Blvd., Miami, Florida 33137, USA

Abstract

Abstract A new, differential equation-based in-vitro–in-vivo correlation (IVIVC) method is proposed that directly relates the time-profiles of in-vitro dissolution rates and in-vivo plasma concentrations by using one-or multi-compartment pharmacokinetic models and a corresponding system of differential equations. The rate of in-vivo input is connected to the rate of in-vitro dissolution through a general functional dependency that allows for time scaling and time shifting. A multiplying factor that accounts for the variability of absorption conditions as the drug moves along is also incorporated. Two data sets incorporating slow-, medium-, and fast-release formulations were used to test the applicability of the method, and predictive powers were assessed with a leave-one-formulation-out approach. All fitted parameters had realistic values, and good or acceptable fits and predictions were obtained as measured by plasma concentration mean squared errors and percent AUC errors. Introduction of step-down functions that account for the transit of the dosage form past the intestinal sites of absorption proved useful. By avoiding the integral transforms used in the existing deconvolution- or convolution-based IVIVC models, the present method can provide increased transparency, improved performance, and greater modelling flexibility.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3