In-vitro In-vivo Correlation Models for Glibenclamide after Administration of Metformin/Glibenclamide Tablets to Healthy Human Volunteers

Author:

Balan Guhan1,Timmins Peter2,Greene Douglas S1,Marathe Punit H1

Affiliation:

1. Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Route 206 & Provinceline Road, Princeton, NJ 08543, USA

2. Department of Biopharmaceutics, Bristol-Myers Squibb Company, Moreton CH46 1QW, UK

Abstract

Abstract In this study, level C and A in-vitro in-vivo correlation (IVIVC) models were developed for glibenclamide. In-vitro dissolution data were collected for the glibenclamide component of three metformin/glibenclamide tablets using a USP Type II apparatus. In-vivo plasma concentration data were obtained after administration of the prototype formulations to 24 healthy volunteers and subject to deconvolution analysis to obtain percentage in-vivo absorbed profiles. Multiple linear level C models were developed for CMAX and AUC(0–48) using percentage in-vitro dissolved data at 10, 45 and 120 min. Initially, the level A model was constructed for the first 2 h only, based on availability of in-vitro data. Another level A model was attempted using a time-scaled approach, with percentage in-vivo absorbed at time t and percentage in-vitro dissolved at time t/I as the correlating data. Internal predictability was evaluated for the level C and time-scaled level A models. For all level C approaches, linear regression models with r2 > 0.99 were determined. The prediction errors (% PE) for Cmax and AUC(0–48) were less than 1% for all formulations at all three chosen time points. The deconvolution analysis indicated biphasic absorption for glibenclamide, with one phase occurring at 2–3 h and another at 6–12 h after dose administration. The level A model using 2-h data was not unique for all formulations and was therefore not developed. The time-scaling factor I correlated highly (r2 = 0.99) with in-vitro mean dissolution time (MDT). A linear regression time scaled model (r2 = 0.97) was successfully developed using in-vitro and in-vivo data from all 3 formulations. However, the internal predictability of the time-scaled model was poor, with % PE values for Cmax and AUC(0–48) being as much as 30.5% and 18.7%, respectively. The results indicate that level C models have good internal predictability. Though a time-scaled level A IVIVC model was successfully developed, the model was found to have poor internal predictability.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3