Synthesis of potential aldose reductase inhibitors based on minimal pharmacophore requirements

Author:

Schlitzer Martin1,Rodriguez Labaniel2,Kador Peter F2

Affiliation:

1. Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany

2. National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA

Abstract

Abstract A series of 17 compounds were synthesized based on the premise that the minimal pharmacophore for aldose reductase inhibition requires the presence of both an aryl group and polar group connected by a linking structure. Three groups of compounds were synthesized, the first possessing an aniline-4-(2′-6′-methylbenzothiazole) or 2-aminobenzothiazole group as the aryl group, the second possessing a 2-naphthyl as the aryl group and the third possessing either a 4-(2-phenylthiazole) or 2-(5-2′-nitrophenylfuran) as the aryl group. In all three of these groups the carboxylate or its methyl ester are linked to the aryl group through various lengths of methylene carbons and amide or cinnamide groups. Optimal activity was observed when the carboxylic group was separated from the aryl group by a linking structure of five atoms in length. Both a double bond and an amide moiety are well tolerated in the linking structure.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3