Application of poly(acrylic acid) superporous hydrogel microparticles as a super-disintegrant in fast-disintegrating tablets

Author:

Yang Shicheng1,Fu Yurong1,Jeong Seong Hoon1,Park Kinam1

Affiliation:

1. Purdue University, Departments of Industrial and Physical Pharmacy, West Lafayette, Indiana, 47907, USA

Abstract

Abstract Poly(acrylic acid) superporous hydrogel (SPH) microparticles possessing a unique porous structure were used as a wicking agent to decrease disintegration time of fast-disintegrating tablets (FDTs). The compression behaviour of poly(acrylic acid) SPH microparticles was evaluated using the Kawakita equation. Effects of various SPH microparticle sizes and a 19-run fractional factorial design were evaluated. The factorial design was based on four factors consisting of ketoprofen, SPH microparticle, filler, and tableting pressure, and each factor contained three levels on the disintegration time and tensile strength of the prepared FDTs. The poly(acrylic acid) SPH microparticles existed in an amorphous state and swelled approximately 80-times in distilled water and 50-times in pH 6.8 0.2 m phosphate buffer. The compressibility of SPH microparticles increased significantly as the microparticle size increased. The FDTs made of SPH microparticles in the range of 75–106 μm showed the fastest disintegration time and higher tensile strength. SPH microparticle, tableting pressure and ketoprofen had significant effects on disintegration time and tensile strength of ketoprofen FDTs. The FDTs that were prepared with 2.5% w/w SPH microparticles of 75–106 μm at 63 MPa pressure possessed a tensile strength of 84.4+4.1 N cm−2 and disintegrated in 15.0+2.0 s. It was concluded that the poly(acrylic acid) SPH microparticles could serve as a good super-disintegrant decreasing the disintegration time of FDTs.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Reference28 articles.

1. Materials as dry binders for direct compression in tablet manufacture. 4. Effect of disintegrants;Asker;Pharmazie,1975

2. Evaluation of rapidly disintegrating tablets prepared by a direct compression method;Bi;Drug Dev. Ind. Pharm.,1999

3. The role of swelling in the disintegration process;Caramella;Int. J. Pharm. Tech. Pro. Manuf.,1984

4. Fast-dissolving tablets;Chang;Pharm. Technol.,2000

5. Synthesis and characterization of superporous hydrogel composites;Chen;J. Control. Release,2000

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3