Capturing water vapors from atmospheric air using superporous gels

Author:

Mittal Hemant,Al Alili Ali,Alhassan Saeed M.

Abstract

AbstractDehumidification performance of most polymer desiccant materials is unsatisfactory because of the complex adsorption mechanism on polymer surface and non-porous structure. A viable alternative of solid desiccants, especially existing polymer desiccants, for capturing water vapors from moist air is the super-porous gels (SPGs). The presence of interconnected channels of pores in its structure facilitates the transfer of water molecules to the internal structure of SPGs. Therefore, in this research work, we are proposingN-isopropylacrylamide (NIPAM) and acrylamide (AM) based thermoresponsive SPGs as a potential alternative to the existing conventional solid desiccants. To ensure the formation of interconnected capillary channels, the SPGs were synthesized via gas blowing and foaming technique. Surface morphology of the SPGs was studied using scanning electron microscopy (SEM) and the other physio-chemical characteristics were studied using different techniques like fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD) and thermo-gravimetric analysis (TGA). Water vapors adsorption properties of the SPGs were explored via adsorption isotherm and kinetics. The adsorption isotherm was found to be of type-III isotherm with a maximum adsorption capacity of 0.75 gw/gadsat 25 °C and 90% relative humidity. Experimental isotherm data correlated well with BET, FHH and GAB isotherm models. Adsorption kinetics suggested that the water vapors diffusion followed intraparticle diffusion and liquid field driving mechanisms collectively. SPGs exhibited very good regeneration and reusability for ten continuous adsorption/desorption cycles. Therefore, the dehumidification efficiency of synthesized SPGs shows that they have potential to replace most of the conventional solid desiccant materials in use.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3