Formulation and release characteristics of poly(lactic-co-glycolic acid) microspheres containing chemically modified protein

Author:

Kim Tae-Kyoung1,Burgess Diane J1

Affiliation:

1. School of Pharmacy, University of Connecticut, 372 Fairfield Road, Storrs, CT 06269, USA

Abstract

Abstract Chemical modification of proteins may influence their formulation into and release from polymeric microspheres. Three chemical modifications of rat serum albumin (RSA) were effected on the amine groups of this protein: conjugation with a polyanion using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, intermolecular cross-linking using glutaraldehyde, and reductive alkylation using propyl aldehyde. The modified proteins had different physicochemical properties as well as improved encapsulation efficiencies compared with native RSA microspheres. The microspheres were incubated at 37°C for over one month to investigate the influence of protein modification on the release profiles. Microsphere degradation accelerated from the ninth day of the release studies and this coincided with an increase in the release rates. The degradation rates of poly(lactic-co-glycolic acid) microspheres containing either native or crosslinked RSA were more rapid than those containing either heparin conjugated or propylated RSA. This was in agreement with the release data, since the release of the native and crosslinked RSA were more rapid than those of the other modified proteins. The release profiles of the RSA-heparin conjugates and the propylated RSA were approximately zero rather than first order between the tenth and thirtieth day of study. Chemical modification of protein may be a useful method to increase encapsulation efficiency and to decrease release rates of proteins that are to be used in microsphere formulations of potent therapeutic proteins.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3