Prevention of structural perturbations and aggregation upon encapsulation of bovine serum albumin into poly(lactide-co-glycolide) microspheres using the solid-in-oil-in-water technique

Author:

Castellanos Ingrid J1,Cuadrado Wanda L1,Griebenow Kai1

Affiliation:

1. Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, PR 00931-3346, USA

Abstract

Abstract Bovine serum albumin (BSA) was encapsulated into poly(lactide-co-glycolide) (PLG) microspheres by a solid-in-oil-in-water (s/o/w) technique. We tested whether perturbations in BSA secondary structure could be minimized during encapsulation by using trehalose and how this would influence BSA aggregation and release. BSA secondary structure was monitored non-invasively by Fourier-transform infrared spectroscopy. When BSA was co-lyophilized with trehalose, lyophilization-induced structural perturbations were significantly reduced. The formulation obtained (BSA-Tre) was encapsulated into PLG microspheres and, by optimizing critical encapsulation parameters, a loading efficiency of 85% was achieved. However, due to the loss of the excipient in the o/w emulsion step, the structure of BSA-Tre was more perturbed than before encapsulation. Excipient-loss and encapsulation-induced structural perturbations could be prevented by saturating the aqueous phase in the o/w step with trehalose and by using the organic solvent chloroform. This in turn reduced the formation of soluble BSA aggregates. BSA was released from PLG microspheres using the improved formulations with an initial release in 24 h of not more than 22%, followed by a sustained release over at least 2 weeks. In summary, optimization of the encapsulation conditions in the s/o/w procedure resulted in the encapsulation of BSA without procedure-induced structural perturbations and minimized the release of aggregated protein. This demonstrates that the s/o/w technique is an excellent alternative to the most common encapsulation procedure, namely the water-in-oil-in-water technique.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Reference23 articles.

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3