Encapsulation of bovine serum albumin in poly(lactide-co-glycolide) microspheres by the solid-in-oil-in-water technique

Author:

Castellanos Ingrid J1,Carrasquillo Karen G1,López Jesiebel De Jésus1,Alvarez Mariali1,Griebenow Kai1

Affiliation:

1. Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, PR 00931–3346, USA

Abstract

Abstract Non-aqueous protocols to encapsulate pharmaceutical proteins into biocompatible polymers have gained much attention because they allow for the minimization of procedure-induced protein structural perturbations. The aim of this study was to determine if these advantages could be extended to a semi-aqueous encapsulation procedure, namely the solid-in-oil-in-water (s/o/w) technique. The model protein bovine serum albumin (BSA) was encapsulated into poly(lactide-co-glycolide) (PLG) microspheres by first suspending lyophilized BSA in methylene chloride containing PLG, followed by emulsification in a 1% aqueous solution of polyvinyl alcohol). By variation of critical encapsulation parameters (homogenization intensity, BSA:PLG ratio, emulsifier concentration, ratio of organic to aqueous phase) an encapsulation efficiency of > 90 % was achieved. The microspheres obtained showed an initial burst release of < 20 %, a sustained release over a period of about 19 days, and a cumulative release of at least 90% of the encapsulated BSA. Different release profiles were observed when using different encapsulation protocols. These differences were related to differences in the microsphere erosion observed using scanning electron microscopy. Release of BSA was mainly due to simple diffusion orto both diffusion and microsphere erosion. Fourier-transform infrared studies were conducted to investigate the secondary structure of BSA during the encapsulation. Quantification of the α-helix and β-sheet content as well as of overall structural changes showed that the secondary structure of encapsulated BSA was not more perturbed than in the lyophilized powder used initially. Thus, the encapsulation procedure did not cause detrimental structural perturbations in BSA. In summary, the results demonstrate that the s/o/w technique is an excellent alternative to the water-in-oil-in-water technique, which is still mainly used in the encapsulation of proteins in PLG microspheres.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3