Affiliation:
1. College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, San 56-1, Shinlim-Dong, Kwanak-Gu, Seoul 151–742, South Korea
Abstract
Abstract
The types of hepatic cytochrome P450 (CYP) isozymes responsible for the metabolism of theophylline and for the formation of 1,3-dimethyluric acid (1,3-DMU) in rats in-vivo does not seem to have been studied at the dose ranges of dose-independent metabolic disposition of theophylline in rats (up to 10 mg kg−1). Therefore, theophylline (5 mg kg−1) was administered i.v. to male Sprague—Dawley rats pretreated with various inducers and inhibitors of CYP isozymes. In rats pretreated with 3-methylcholanthrene (3-MC), orphenadrine or dexamethasone (main inducers of CYP1A1/2, CYP2B1/2 and CYP3A1/2, respectively, in rats), the time-averaged non-renal clearance (CLNR) of theophylline was significantly faster than in their respective controls (1260, 42.7 and 69.0% increases, respectively). However, in rats pretreated with troleandomycin (a major inhibitor of CYP3A1/2 in rats), CLNR was significantly slower than in the controls (50.7% decrease). The 24 h urinary excretion of 1,3-DMU was increased significantly only in rats pretreated with 3-MC. The ratio of area under the curve for 1,3-DMU and theophylline (AUC1,3-DMU/AUCtheophylline) was increased significantly in rats pretreated with 3-MC (160% increase) and decreased significantly in rats pretreated with troleandomycin (50.1% decrease); however, the ratio was not increased in rats pretreated with dexamethasone. These data suggest that theophylline is primarily metabolized via CYP1A1/2, CYP2B1/2, and CYP3A1/2, and that 1,3-DMU is primarily formed via CYP1A1/2, and possibly CYP3A1/2, in rats.
Publisher
Oxford University Press (OUP)
Subject
Pharmaceutical Science,Pharmacology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献