Prediction and Forecasting of Air Quality Index in Chennai using Regression and ARIMA time series models

Author:

Mani Geetha, ,Viswanadhapalli Joshi Kumar,Stonie Albert Alexander, ,

Abstract

Air is one of the most fundamental constituents for the sustenance of life on earth. The meteorological, traffic factors, consumption of non-renewable energy sources, and industrial parameters are steadily increasing air pollution. These factors affect the welfare and prosperity of life on earth; therefore, the nature of air quality in our environment needs to be monitored continuously. The Air Quality Index (AQI), which indicates air quality, is influenced by several individual factors such as the accumulation of NO2, CO, O3, PM2.5, SO2, and PM10. This research paper aims to predict and forecast the AQI with Machine Learning (ML) techniques, namely linear regression and time series analysis. Primarily,Multi Linear Regression (MLR) model, supervised machine learning, is developed to predict AQI. NO2, Ozone(O3), PM 2.5, and SO2 sensor output collected from Central Pollution Control Board (CPCB) – Chennai region, India feed as input features and optimized AQI calculated from sensor's output set as a target to train the regression model. The obtained model parameters are validated with new and unseen sensor output. The Key Performance Indices(KPI) like co-efficient of determination, root mean square error and mean absolute error were calculated to validate the model accuracy. The K-cross-fold validation for testing data of MLR was obtained as around 92%. Secondly, the Auto-Regressive Integrated Moving Average (ARIMA) time series model is applied to forecast the AQI. The obtained model parameters were validated with unseen data with a timestamp. The forecasted AQI value of the next 15 days lies in a 95 % confidence interval zone. The model accuracy of test data was obtained as more than 80%.

Publisher

Journal of Engineering Research

Subject

General Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3