Author:
Mani Geetha, ,Viswanadhapalli Joshi Kumar,Stonie Albert Alexander, ,
Abstract
Air is one of the most fundamental constituents for the sustenance of life on earth. The meteorological, traffic factors, consumption of non-renewable energy sources, and industrial parameters are steadily increasing air pollution. These factors affect the welfare and prosperity of life on earth; therefore, the nature of air quality in our environment needs to be monitored continuously. The Air Quality Index (AQI), which indicates air quality, is influenced by several individual factors such as the accumulation of NO2, CO, O3, PM2.5, SO2, and PM10. This research paper aims to predict and forecast the AQI with Machine Learning (ML) techniques, namely linear regression and time series analysis. Primarily,Multi Linear Regression (MLR) model, supervised machine learning, is developed to predict AQI. NO2, Ozone(O3), PM 2.5, and SO2 sensor output collected from Central Pollution Control Board (CPCB) – Chennai region, India feed as input features and optimized AQI calculated from sensor's output set as a target to train the regression model. The obtained model parameters are validated with new and unseen sensor output. The Key Performance Indices(KPI) like co-efficient of determination, root mean square error and mean absolute error were calculated to validate the model accuracy. The K-cross-fold validation for testing data of MLR was obtained as around 92%. Secondly, the Auto-Regressive Integrated Moving Average (ARIMA) time series model is applied to forecast the AQI. The obtained model parameters were validated with unseen data with a timestamp. The forecasted AQI value of the next 15 days lies in a 95 % confidence interval zone. The model accuracy of test data was obtained as more than 80%.
Publisher
Journal of Engineering Research
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献