Time to Fracture and Fracture Strain are Negatively Related in Sweet Cherry Fruit Skin

Author:

Brüggenwirth Martin,Knoche Moritz

Abstract

Rain cracking of sweet cherry fruit (Prunus avium L.) is said to occur when the volume increase associated with water uptake, extends the fruit skin beyond its upper mechanical limits. Biaxial tensile tests recorded fracture strains (εfracture) in the range 0.17 to 0.22 mm2·mm−2 (equivalent to 17% to 22%). In these tests, an excised skin segment is pressurized from its inner surface and the resulting two-dimensional strain is quantified. In contrast, the skins of fruit incubated in water in classical immersion assays are fractured at εfracture values in the range 0.003 to 0.01 mm2·mm−2 (equivalent to 0.3% to 1%)—these values are one to two orders of magnitude lower than those recorded in the biaxial tensile tests. The markedly lower time to fracture (tfracture) in the biaxial tensile test may account for this discrepancy. The objective of our study was to quantify the effect of tfracture on the mechanical properties of excised fruit skins. The tfracture was varied by changing the rate of increase in pressure (prate) and hence, the rate of strain (εrate) in biaxial tensile tests. A longer tfracture resulted in a lower pressure at fracture (pfracture) and a lower εfracture indicating weaker skins. However, a 5-fold difference in εfracture remained between the biaxial tensile test of excised fruit skin and an immersion assay with intact fruit. Also, the percentage of epidermal cells fracturing along their anticlinal cell walls differed. It was highest in the immersion assay (94.1% ± 0.6%) followed by the long tfracture (75.3% ± 4.7%) and the short tfracture (57.3% ± 5.5%) in the biaxial tensile test. This indicates that the effect of water uptake on cracking extends beyond a mere increase in fruit skin strain resulting from a fruit volume increase. Instead, the much lower εfracture in the immersion assay indicates a much weaker skin—some other unidentified factor(s) are at work.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3