Rain Cracking in Sweet Cherries is not Due to Excess Water Uptake but to Localized Skin Phenomena

Author:

Winkler Andreas,Peschel Stefanie,Kohrs Kathleen,Knoche Moritz

Abstract

Rain cracking of sweet cherry (Prunus avium L.) fruit is commonly thought to result from excessive net water uptake. This excess increases flesh turgor, which then strains and eventually ruptures the skin at the weakest point. This idea—the critical turgor hypothesis—assumes the fruit comprises a semifluid flesh, held under pressure by a taut skin. The objectives of this study were to test the validity of this popular hypothesis. We investigated the effects of 1) the different pathways of water uptake and 2) the fruit’s water balance on cracking. Incubating fruit of 19 cultivars in water resulted in rapid fruit cracking. The time to 50% cracking (T50) averaged 7.5 ± 1.3 hours with considerable variability between cultivars (T50 range from 1.5 to 18.6 hours). The amount of water taken up at 50% cracking (WU50) averaged 96.5 ± 17.6 mg (WU50 range from 17.7 to 331.5 mg). There was no correlation between either the T50 or the WU50, and the rate of water uptake. Also, there was no correlation between the values of T50 (r = 0.58) and only a weak correlation between the values of WU50 (r = 0.80*) determined in different years. Comparing the value of WU50 under incubation vs. under perfusion revealed a 3.9- to 38-fold higher WU50 under perfusion (397.6 to 1840 mg) than under incubation (48.8 to 102.6 mg). This marked dissimilarity remained, regardless of pretreatments with isotonic polyethylene glycol (PEG) 6000 to induce microcracking or by manipulation of skin wetness during perfusion. Sealing the pedicel/fruit junction markedly decreased the rate of water uptake under incubation. It had no effect on the T50, and it markedly decreased the WU50. Similarly, manually induced skin defects greatly increased the rate of water uptake but, with few exceptions, had no effect on the T50, whereas, the WU50 had increased. The location on the fruit surface of the resulting cracks was not related to the region of the skin in which the manual defect was induced. Allowing the fruit to transpire increased both, the T50 and the WU50. Interestingly, the amount of water lost by transpiration exceeded the amount that was subsequently required to cause cracking up to 5-fold. Incubating fruit with their stylar ends immersed in water, whereas their remaining surfaces were in air of 0%, 28%, 75%, or 100% relative humidity (RH) resulted in net losses of water of up to 5.9 ± 0.7 mg·h−1, nevertheless their stylar ends still cracked. All our results indicate rain cracking in sweet cherries is a localized phenomenon that is not related to the net fruit water balance (the critical turgor hypothesis) but is the result of more local exposure of the fruit skin to liquid-phase water (the zipper hypothesis).

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3