Interactions of CO2 Enrichment and Temperature on Carbohydrate Production and Accumulation in Muskmelon Leaves

Author:

Acock B.,Acock M.C.,Pasternak D.

Abstract

We examined how temperature and stage of vegetative growth affect carbohydrate production and accumulation in Cucumis melo L. `Haogen' grown at various CO2 concentrations ([CO2]). Carbohydrate production was measured by net assimilation rate either on a leaf-area basis (NARa) or a leaf dry-weight basis (NARw); carbohydrate accumulation was measured by leaf starch plus sugar content. Twenty-four- and 35-day-old muskmelon plants were grown for 11 days in artificially lighted cabinets at day/night temperatures of 20/20 or 40/20C and at [CO2] of 300 or 1500 μl·liter-1. NARa and NARw both increased with increasing [CO2], but the CO2 effect was smaller at low temperature, especially for plants at the later stage of vegetative growth. NARw was a better indicator of total dry-weight gain than was NARa. Both suboptimal temperatures and CO2 enrichment caused carbohydrates to accumulate in the leaves at both stages of vegetative growth. NARw was correlated negatively with leaf starch plus sugar content. The rate of decrease in NARw with increasing leaf starch plus sugar content was significantly greater for CO2-enriched plants. Leaf starch plus sugar content >0.03 to 0.04 kg·kg-1 of leaf residual dry weight at the end of a dark period may indicate that temperature is suboptimal for growth. Plants grown at the same temperature had higher leaf starch plus sugar content if they were CO2-enriched than if grown in ambient [CO2], suggesting that an optimal temperature for growth in ambient [CO2] may be suboptimal in elevated [CO2].

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3