Characterization of Physiological and Biochemical Factors Associated with Postharvest Water Loss in Ripe Pepper Fruit during Storage

Author:

Kissinger Maalekuu,Tuvia-Alkalai Sharon,Shalom Yavin,Fallik Elazar,Elkind Yonatan,Jenks Matthew A.,Goodwin Mark S.

Abstract

Fruit of pepper (Capsicum annuum L.) is hollow by nature, which limits its water reservoir capacity, and as such, small amounts of water loss result in loss of freshness and firmness, which reduce fruit quality, shelf life, and market value. In order to understand the basis for water loss from fruit, 10 pepper accessions with wide variation in water loss rate were used to study physiological and biochemical factors associated with postharvest water loss in ripe pepper fruit during storage. Postharvest water loss rate in ripe pepper fruit stored at 20 °C, and 85% relative humidity, was found to be associated with cell membrane ion leakage, lipoxygenase activity, and total cuticular wax amount. Total cuticular wax amounts were highest in the high-water-loss pepper fruit, and lowest in the low-water-loss fruit. However, total cuticle amount (isolated enzymatically and quantified gravimetrically), total cutin monomer amount, and the amount of individual cutin monomer and wax constituents (determined using gas chromatography mass spectrometry) indicated no direct association with postharvest water loss rates. Fruit fresh weight, pericarp weight, pericarp surface area, pericarp thickness, initial water content, and dry matter were highly associated with each other, but less so with water loss rate. Fruit of accessions displaying high fruit water loss rate matured and ripened earlier than fruit of accessions displaying low-water-loss rate. Cell membrane ion leakage and lipoxygenase activity were higher after storage than immediately after harvest. Pepper fruit total cuticle wax amount, lipoxygenase activity, and cell membrane ion leakage were directly related to postharvest water loss rate in pepper fruit during storage.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3