Incidence of Physical Damage on Peach and Nectarine Skin Discoloration Development: Anatomical Studies

Author:

Crisosto Carlos H.,Johnson R. Scott,Luza Juvenal,Day Kevin

Abstract

Skin discoloration (SD) formation in peach [Prunus persica (L.) Batsch] and nectarine [Prunus persica (L.) Batsch, var. nectarine] was related to physical damage (abrasion) to the fruit during fruit handling (harvest and hauling operations) within the orchard and during transport to the packinghouse. Vibration and rubbing treatments increased SD formation indicating that tissue damage is involved in SD formation. Anatomical studies comparing sound and SD-injured tissues done by scanning electron and light microscopy indicated that very-low-intensity physical damage could induce brown and/or black spots because of cell disruption in the epidermal and hypodermal layers. The fact that injury was specific to the exocarp tissues (cuticle, epidermis, and hypodermis), and that mesocarp tissue located below the exocarp cells remained sound and turgid, indicated that abrasion injury is associated with SD. Similar types of visible and anatomical injury characteristics were induced by a rubbing treatment, demonstrating that physical abrasion damage affecting just exocarp cells was enough to induce SD:

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3