Author:
Lester Gene E.,Grusak Michael A.
Abstract
Muskmelon senescence is directly associated with a decline in hypodermal mesocarp membrane integrity and its Ca concentration, but infusing Ca into melons has been a problem. Fully ripened and abscised hybrid honeydew [Cucumis melo L. (Inodorus Group) `Honey Brew'] and netted muskmelon [Cucumis melo L. (Reticulatus Group) `Explorer'] fruit were submerged (dipped) 20 min at 25 ± 3 °C in a solution containing a Ca-chelate, a Mg-chelate, a combination of both chelates, or no mineral chelate. Following 10 or 24 days of cold storage (4 °C for `Explorer' and 10 C for `Honey Brew'), fruit were analyzed for mineral content and various senescence-related parameters. Abscised `Honey Brew' fruit dipped in either Ca-chelate or (Ca+Mg)-chelate and abscised `Explorer' fruit dipped in (Ca+Mg)-chelate, followed by 10 days cold storage, had hypodermal mesocarp Ca concentrations of at least 6.0 mg·g-1 dry weight. Maintaining hypodermal mesocarp tissue Ca concentrations at this level during postharvest storage, especially for fully ripe `Honey Brew' fruit, maintained membrane integrity and fruit firmness, and extended storage life 2.4-fold (i.e., to 24 days). The senescence regulatory effect of postharvest Ca-chelate treatments on abscised `Explorer' was highly variable, compared to `Honey Brew', which appeared to be due to the surface netting interfering with movement of Ca into the hypodermal mesocarp. Thus, postharvest Ca-chelate application to abscised `Honey Brew' fruit could delay fruit senescence in commercial storage, and open up new markets for fully ripened honeydew melons.
Publisher
American Society for Horticultural Science
Cited by
80 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献