Ethanol Inhibits Ripening of Tomato Fruit Harvested at Various Degrees of Ripeness without Affecting Subsequent Quality

Author:

Saltveit Mikal E.,Sharaf Abdel R.

Abstract

Tomato fruit (Lycopersicon esculentum Mill., cv. Castelmart) were harvested at various degrees of ripeness and exposed to ethanol vapor at 0, 2, or 4, ml·kg-1 in a 20-liter jar for 0, 2, 4, or 6 hours at 20C. Ripening was measured as changes in subjective color and in firmness and production of CO2 and ethylene. The soluble solids concentration (percent), titratable acidity (percent), and pH were measured at the end of the storage period when the fruit were red-ripe. Ethanol's inhibition of ripening was not confined to mature-green fruit, but also inhibited reddening of breaker, turning, and pink fruits. Storage of mature-green fruit at 20, 15, or 12C after treatment with 0 or 2 ml ethanol/kg at 20C prolonged the delay in ripening for 5, 6, and 7 days, respectively, compared with controls. There was no reduction in the quality of these fruit when they were red-ripe, even though there was an 11-day difference between the time the 20C control and the 12C-treated fruit became red-ripe. An informal panel did not detect any differences in flavor between these control and ethanol-treated fruit that were red-ripe. Increasing the duration of exposure to ethanol vapors from 2 to 6 hours had a pronounced effect on ethylene and CO2 production, but it did not significantly prolong the inhibition of ripening of mature-green fruit nor did it change their rate of softening during ripening. Increasing the temperature during exposure increased the effectiveness of ethanol, with the same level of inhibition produced by 6 hours at 20C, 4 hours at 25C, or 2 hours at 30C. Postharvest use of ethanol vapor to retard ripening may be a useful technique to extend the market life of tomato fruit.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3