Effect of Night Temperature on Pollen Characteristics, Growth, and Fruit Set in Tomato

Author:

Peet Mary M.,Bartholemew Michael

Abstract

Lycopersicon esculentum Mill. `Laura' plants were grown in the North Carolina State Univ. phytotron at 26C day temperature and 18, 22, 24, or 26C night temperatures to determine the effects of night temperature on pollen characteristics, growth, fruit set, and early fruit growth. Total and percentage normal pollen grains were higher in plants grown at night temperatures of 18 and 22C than at 24 and 26C, but germination was highest in pollen produced at 26C. Seed content was rated higher on the plants grown at 18C night temperatures than in any of the other treatments. Numbers of flowers and fruit on the first cluster were lower in the 26C night treatment than in the other night temperature treatments. Plant height was greatest but total shoot dry mass was lowest in the 22C night temperature treatments. Fruit fresh mass increased with night temperature, reflecting more rapid development, but the experiment was not continued to fruit maturity, so the effect of night temperature on final fruit size and total plant production could not be determined. Night temperatures of 26C reduced fruit number and percentage fruit set only slightly at a day temperature of 26C, even though these temperatures were above optimal for pollen production and seed formation. To separate temperature effects on pollen from direct or developmental effects on female reproductive structures, pollen was collected from plants in the four night temperature treatments and applied to stigmas of a male-sterile cultivar kept at 24-18C minimum temperatures in adjacent greenhouses. In the greenhouse-grown male sterile plants, no consistent effects of night temperature treatment given the pollen could be seen in fruit set, fruit mass, seed content (either on a rating or seed count basis), seedling germination, or seedling dry mass.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3