Comprehensive Understanding of Selecting Traits for Heat Tolerance during Vegetative and Reproductive Growth Stages in Tomato

Author:

Lee KwanukORCID,Rajametov Sherzod NigmatullayevichORCID,Jeong Hyo-Bong,Cho Myeong-CheoulORCID,Lee Oak-Jin,Kim Sang-GyuORCID,Yang Eun-Young,Chae Won-ByoungORCID

Abstract

Climate change is an important emerging issue worldwide; the surface temperature of the earth is anticipated to increase by 0.3 °C in every decade. This elevated temperature causes an adverse impact of heat stress (HS) on vegetable crops; this has been considered as a crucial limiting factor for global food security as well as crop production. In tomato plants, HS also causes changes in physiological, morphological, biochemical, and molecular responses during all vegetative and reproductive growth stages, resulting in poor fruit quality and low yield. Thus, to select genotypes and develop tomato cultivars with heat tolerance, feasible and reliable screening strategies are required that can be adopted in breeding programs in both open-field and greenhouse conditions. In this review, we discuss previous and recent studies describing attempts to screen heat-tolerant tomato genotypes under HS that have adopted different HS regimes and threshold temperatures, and the association of heat tolerance with physiological and biochemical traits during vegetative and reproductive growth stages. In addition, we examined the wide variety of parameters to evaluate the tomato’s tolerance to HS, including vegetative growth, such as leaf growth parameters, plant height and stem, as well as reproductive growth in terms of flower number, fruit set and yield, and pollen and ovule development, thereby proposing strategies for the development of heat-tolerant tomato cultivars in response to high temperature.

Funder

Rural Development Administration

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3