Host Reactions of Sweetpotato Genotypes to Root-knot Nematodes and Variation in Virulence of Meloidogyne incognita Populations

Author:

Cervantes-Flores J.C.,Yencho G.C.,Davis E.L.

Abstract

Sweetpotato [Ipomoea batatas (L.) Lam.] genotypes were evaluated for resistance to North Carolina root-knot nematode populations: Meloidogyne arenaria (Neal) Chitwood races 1 and 2; M. incognita (Kofoid & White) Chitwood races 1, 2, 3, and 4; and M. javanica (Treub) Chitwood. Resistance screening was conducted using 150-cm3 Conetainers containing 3 sand: 1 soil mix. Nematode infection and reproduction were assessed as the number of egg masses produced by root-knot nematodes per root system. Host suitability for the root-knot nematode populations differed among the 27 sweetpotato genotypes studied. Five genotypes (`Beauregard', L86-33, PDM P6, `Porto Rico', and `Pelican Processor') were selected for further study based on their differential reaction to the different root-knot nematodes tested. Two African landraces (`Tanzania' and `Wagabolige') were also selected because they were resistant to all the nematode species tested. The host status was tested against the four original M. incognita races, and an additional eight populations belonging to four host races, but collected from different geographical regions. The virulence of root-knot nematode populations of the same host race varied among and within sweetpotato genotypes. `Beauregard', L86-33, and PDM P6 were hosts for all 12 M. incognita populations, but differences in the aggressiveness of the isolates were observed. `Porto Rico' and `Pelican Processor' had different reactions to the M. incognita populations, regardless of the host race. Several clones showed resistance to all M. incognita populations tested. These responses suggest that different genes could be involved in the resistance of sweetpotato to root-knot nematodes. The results also suggest that testing Meloidogyne populations against several different sweetpotato hosts may be useful in determining the pathotypes affecting sweetpotato.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3