Author:
Craver Joshua K.,Boldt Jennifer K.,Lopez Roberto G.
Abstract
High-quality young plant production in northern latitudes requires supplemental lighting (SL) to achieve a recommended daily light integral (DLI) of 10 to 12 mol·m−2·d−1. High-pressure sodium (HPS) lamps have been the industry standard for providing SL in greenhouses. However, high-intensity light-emitting diode (LED) fixtures providing blue, white, red, and/or far-red radiation have recently emerged as a possible alternative to HPS lamps for greenhouse SL. Therefore, the objectives of this study were to 1) quantify the morphology and nutrient concentration of common and specialty bedding plant seedlings grown under no SL, or SL from HPS lamps or LED fixtures; and 2) determine whether SL source during propagation or finishing influences finished plant quality or flowering. The experiment was conducted at a commercial greenhouse in West Lafayette, IN. Seeds of New Guinea impatiens (Impatiens hawkeri ‘Divine Blue Pearl’), French marigold (Tagetes patula ‘Bonanza Deep Orange’), gerbera (Gerbera jamesonii ‘Terracotta’), petunia (Petunia ×hybrida ‘Single Dreams White’), ornamental millet (Pennisetum glaucum ‘Jester’), pepper (Capsicum annuum ‘Hot Long Red Thin Cayenne’), and zinnia (Zinnia elegans ‘Zahara Fire’) were sown in 128-cell trays. On germination, trays were placed in a double-poly greenhouse under a 16-hour photoperiod of ambient solar radiation and photoperiodic lighting from compact fluorescent lamps providing a photosynthetic photon flux density (PPFD) of 2 µmol·m−2·s−1 (ambient conditions) or SL from either HPS lamps or LED fixtures providing a PPFD of 70 µmol·m−2·s−1. After propagation, seedlings were transplanted and finished under SL provided by the same HPS lamps or LED fixtures in a separate greenhouse environment. Overall, seedlings produced under SL were of greater quality [larger stem caliper, increased number of nodes, lower leaf area ratio (LAR), and greater dry mass accumulation] than those produced under no SL. However, seedlings produced under HPS or LED SL were comparable in quality. Although nutrient concentrations were greatest under ambient conditions, select macro- and micronutrient concentrations also were greater under HPS compared with LED SL. SL source during propagation and finishing had little effect on flowering and finished plant quality. Although these results indicate little difference in plant quality based on SL source, they further confirm the benefits gained from using SL for bedding plant production. In addition, with both SL sources producing a similar finished product, growers can prioritize other factors related to SL installations such as energy savings, fixture price, and fixture lifespan.
Publisher
American Society for Horticultural Science