Light Spectra Have Minimal Effects on Rooting and Vegetative Growth Responses of Clonal Cannabis Cuttings

Author:

Moher Melissa1,Llewellyn David1,Golem Scott2,Foley Elizabeth2,Dinka Steve2,Jones Max3,Zheng Youbin1

Affiliation:

1. School of Environmental Science, University of Guelph, Guelph, Ontario, Canada, N1G 2W1

2. HEXO Corp., 120 Chem. de la Rive, Gatineau, Quebec, Canada, J8M 1V2

3. Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada, N1G 2W1

Abstract

Until recently, most clonal cannabis (Cannabis sativa) has been propagated using fluorescent lights. Transitioning to light-emitting diodes (LEDs) may be a viable alternative to fluorescent lighting, enabling cultivators to provide specific spectrum treatments to enhance rooting while also saving energy. Vegetative stem cuttings of ‘Gelato-27’, ‘Grace’, and ‘Meridian’ were rooted for 15 days under various combinations of blue (B), red (R), ultraviolet-A (UVA) LEDs, phosphor-converted white (W) LEDs, and a fluorescent (F) control treatment, each with a canopy-level photosynthetic photon flux density (PPFD) of 200 µmol·m−2·s−1 and 16-hour photoperiod. The photon flux ratios of blue (B; 400–500 nm) and red (R; 600–700 nm) narrowband LED treatment combinations were (1) BR, fixed spectrum of B15:R85; (2) B, B75:R25 on day 0–2 followed by B15:R85 on day 2–14; (3) B+UVA, B75:R25 on day 0–2 followed by B15:R85 on day 2–14 plus 15 µmol·m−2·s−1 of UVA on day 7–14; (4) B50, B15:R85 on day 0–7 followed by B50:R50 on day 7–14. The W and F treatments both had static spectra. After the propagation period (i.e., plug stage), a portion of the cuttings under each treatment × cultivar combination were destructively harvested and the remainder were transplanted and grown vegetatively for an additional 21 days (i.e., transplant stage) under a PPFD of ≈275 µmol·m−2·s−1 from ceramic metal halide fixtures and then destructively harvested. Although there were no spectrum treatment effects on the percentage of cuttings that rooted, root index values were higher in cuttings grown under B+UVA vs. F. Further, relative root dry weights of plugs from the B, B+UVA, B50, and F treatments were higher than the W treatment. At the end of the plug stage, there were no spectrum treatment effects on the chlorophyll content index, cuttings grown under the B treatment had thicker stems compared with BR and W treatments, and cuttings grown under the F treatment exhibited the lowest percentage of new aboveground growth. None of the aforementioned spectrum treatment effects from the propagation stage persisted post-transplant. The use of LEDs is a promising, energy-efficient alternative to fluorescent lighting for cannabis propagation and B-enhanced spectrum treatments appear to enhance the rooting performance of clonal cannabis cuttings.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Reference37 articles.

1. Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs);Bantis,,2018

2. An update on plant photobiology and implications for cannabis production;Bilodeau,,2019

3. Quantitative analysis of adventitious root growth phenotypes in carnation stem cuttings;Birlanga,,2015

4. Phenotypic plasticity influences the success of clonal propagation in industrial pharmaceutical Cannabis sativa;Campbell,,2019

5. Vegetative propagation of cannabis by stem cuttings: Effects of leaf number, cutting position, rooting hormone and removal of leaf tips;Caplan,,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3