The Quality Evaluation of Tea (Camellia sinensis) Varieties Based on the Metabolomics

Author:

Gai Zhongshuai,Wang Yu,Jiang Jutang,Xie Hui,Ding Zhaotang,Ding Shibo,Wang Hui

Abstract

The identification and evaluation of tea [Camellia sinensis (L.) O. Kuntze] germplasm resources are of great significance for tea plant breeding. In recent years, various methods, such as morphology, biochemistry, molecular markers, and sensory evaluation, have been used to evaluate the tea germplasm resources. However, the evaluation of tea germplasms based on metabolomics is rarely reported. In this study, we first measured the main agronomic characters and biochemical components of tea young shoots in spring, and then analyzed the metabolic profiles using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography with tandem mass spectrometry (LC-MS/MS). The results indicate that tea germplasm accessions QN3 and QN38 had excellent agronomic traits with early germination and high yield compared with HM. The biosynthesis of flavonoids in young shoots of QN3 was more vigorous, especially for the biosynthesis of epigallocatechin gallate (EGCG) and epicatechin gallate (ECG). Accession QN3 had highest content of luteoloside, myricetin and rutin, whereas QN38 had highest content of most amino acids. On the basis of sensory quality evaluation, accession QN3 and QN38 all had higher total quality scores. By using these approaches, we found that QN3 and QN38 are excellent breeding materials with high yield and high quality for making green teas. We also believe that the evaluation system constructed by the approaches described here is suitable for the identification of tea germplasms.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3