Author:
McConchie Robyn,Lang N. Suzanne
Abstract
Protea neriifolia R. Br., P. susannae E.P. Phillips × compacta R. Br., and P. eximia (Salis. ex Knight) Fourcade cut flower stems were examined to determine the relationship between postharvest leaf blackening rate and preharvest carbohydrate status. Postharvest leaf blackening was highest (83% by day 4) in P. eximia floral stems, which had the lowest preharvest sucrose concentrations. In contrast, P. susannae × compacta had <5% leaf blackening by day 4 and the highest preharvest leaf sucrose concentrations. Starch concentrations were highest in P. neriifolia; however, leaf blackening was intermediate between P. susannae × compacta and P. eximia and reached 52% at day 4. Preharvest carbon-exchange rate and stomatal conductance in all three species were extremely low, despite high photosynthetically active radiation and apparent lack of water stress. Comparing preharvest carbohydrate profiles in vegetative and floral stems suggests that vegetative stems may have a sink-to-source transition zone between the second and third divisions, while most leaves on floral stems may have transferred carbohydates to source leaves at harvest. While preharvest floral stem sucrose concentrations can be linked to leaf blackening rate, the high starch reserves in P. neriifolia reduced leaf blackening little in this species. We conclude that leaf blackening may be related more to inflorescence sink demand after harvest and oxidative substrate availability than preharvest reserve carbohydrate concentrations in each species.
Publisher
American Society for Horticultural Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献