Tomato Fruit Chilling Tolerance in Relation to Internal Atmosphere after Return to Ambient Temperature

Author:

Bergevin M.,L'Heureux G.P.,Willemot C.

Abstract

Mature-green `Vedette' tomato (Lycopersicon esculentum Mill.) fruit were stored with (+P) or without (-P) peduncles at 1C. During storage and after return to ambient temperature, pigment content and electrolyte leakage of pericarp tissue and fruit internal atmosphere composition were monitored. The +P fruit showed severe chilling injury (CI) symptoms-shriveling and brown discoloration of the surface-on transfer to 20C after at least 8 days of exposure to low temperature. The chilling-injured fruit did not ripen normally; i.e., pigmentation did not change at 20C. The -P fruit were largely unaffected and ripened normally at 20C. Severely injured tomatoes showed an apparent decrease in electrolyte leakage after transfer to ambient temperature. The CO, content of the -P fruit internal atmosphere was significantly lower than in +P tomatoes after return to 20C. The peduncle scar has a greater permeability to gases than the skin and facilitates gas exchange with the external atmosphere. The accumulation of CO, in the internal atmosphere of the chilled +P fruit after transfer to 20C apparently promoted CI symptom development.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3