Foliar Applications of Calcium and Boron Do Not Increase Fruit Set or Yield in Northern Highbush Blueberry (Vaccinium corymbosum)

Author:

Arrington Matthew,DeVetter Lisa Wasko

Abstract

Fruit set in northern highbush blueberry (Vaccinium corymbosum L.) can be low under certain climatic conditions, contributing to reduced yields in northwestern Washington. The mechanisms influencing fruit set are complex, but reduced fruit set may be associated with inadequate nutrient availability during critical stages of flowering, ovule fertilization, and initial fruit development. Calcium (Ca) and boron (B) are of particular interest for reproductive developmental processes and are frequently applied annually by growers in the Pacific Northwest region because of the perception that these nutrients enhance fruit set and corresponding yields. Evaluation of commonly applied products containing these nutrients and their effects on fruit set and yield are of specific importance to justify the application of these nutrients. To address this, commercially available fertilizers containing Ca and B were applied to ‘Draper’ and ‘Bluecrop’ blueberry as foliar sprays, either alone or in combination, during the 2015 and 2016 growing seasons in northwestern Washington. Treatments included calcium chloride (750 and 1500 ppm Ca), calcium sulfate (150 ppm Ca), and tetra borate (125 and 250 ppm B) foliar sprays, repeated six times per season every 7–10 days from early pink bud through petal fall. No significant increases were observed for fruit set, estimated yield, and fruit quality (firmness and berry weight) across the treatments. Increased concentrations of B were observed in leaf tissues in 2015 and 2016, and to a lesser extent fruit tissues. Calcium remained unchanged regardless of treatment and tissue type. Under the conditions of this study, foliar applications of Ca and B did not lead to increased fruit set or yield. This research suggests that other approaches should be explored to increase fruit set and corresponding yields of highbush blueberry grown in northwest Washington.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3