595 The Cuticular Membrane: A Critical Factor in Rain-induced Cracking of Sweet Cherry Fruit

Author:

Bukovac Martin J.,Pastor Alicia,Fader Royal G.,Knoche Moritz

Abstract

Morphological and physical characteristics of the cuticular membrane (CM) of selected cultivars of sweet cherry (Prunus avium L.) fruit were studied relative to rain-induced cracking. Two characteristics of the CM may be determinants in rain-induced fruit cracking. The surface morphology and chemistry determine surface wettability and water retention, and the morphology and physicochemical characteristics its water permeability. The fruit epidermis as well as the guard cell walls adjacent to the outer vestibule and stomatal pore are covered by a thin lipoidal CM. Stomata were present at a frequency of 0.1 to 2 per mm2 depending on cultivar and fruit surface position. However, most appeared nonfunctional with many pores partially or completely occluded with wax-like material. There was no evidence of water (containing fluorescein or AgNO3) penetration into stomatal pores following surface application or submerging fruit for short periods. There was stomatal pore penetration when submerged fruit were infiltrated by reduced pressure in the presence of 0.1% L-77. Preferential sorption of AgNO3 and fluorescein by cuticular ledges and guard cells was noted. The epicuticular wax (ECW) had no significant fine-structure. The CM was isolated enzymatically (cellulase/pectinase) and found to be 1 to 2 μm thick with an area weight of 1.2 to 2.3 g·m–2, of which 25% to 40% was chloroform/methanol (1: 1by vol.) soluble. Fractionation of the chloroform/methanol fraction indicated the presence of four groups of nonpolar constituents. The fruit surface was moderately difficult to wet, forming contact angles of 85% to 105%, and with an estimated critical surface tension in the range of 16-24 mN·m–1. Fruit water loss (transpiration) and uptake on submersion was followed and found to be complex. Transpiration increased with an increase in temperature, and both rate of transpiration and water uptake increased after removal of the epicuticular and cuticular waxes. Pathways of water uptake and the significance of our findings to rain-induced fruit cracking will be discussed.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3