Irradiance from Distinct Wavelength Light-emitting Diodes Affect Secondary Metabolites in Kale

Author:

Lefsrud Mark G.,Kopsell Dean A.,Sams Carl E.

Abstract

The use of light-emitting diodes (LEDs) for plant production is a new field of research that has great promise to optimize wavelength-specific lighting systems for precise management of plant physiological responses and important secondary metabolite production. In our experiment, hydroponically cultured kale plants (Brassica oleracea L. var. acephala D.C.) were grown under specific LED wavelength treatments of 730, 640, 525, 440, and 400 nm to determine changes in the accumulation of chlorophylls, carotenoids, and glucosinolates. Maximum accumulation, on a fresh mass basis, of chlorophyll a and b and lutein occurred at the wavelength of 640 nm, whereas β-carotene accumulation peaked under the 440-nm treatment. However, when lutein was measured on a dry mass basis, maximum accumulation was shifted to 440 nm. Sinigrin was the only glucosinolate to respond to wavelength treatments. Wavelength control using LED technology can affect the production of secondary metabolites such as carotenoids and glucosinolates with irradiance levels also a factor in kale. Management of irradiance and wavelength may hold promise to maximize nutritional potential of vegetable crops grown in controlled environments.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3