Soluble Solids and Simple Sugars Measurement in Intact Mango Using Near Infrared Spectroscopy

Author:

Delwiche Stephen R.1,Mekwatanakarn Weena2,Wang Chien Y.3

Affiliation:

1. 1U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Food Safety Laboratory, Beltsville, MD 20705-2350

2. 2Department of Horticulture, Faculty of Agriculture, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand

3. 3U.S. Department of Agriculture-Agricultural Research Service, Beltsville Agricultural Research Center, Produce Quality and Safety Laboratory, Beltsville, MD 20705

Abstract

A rapid, reliable, and nondestructive method for quality evaluation of mango (Magnifera indica) fruit is important to the mango industry for international trade. The objective of this study was to determine the potential of near-infrared (NIR) spectroscopy to predict soluble solids content (SSC) and individual and combined concentrations of sucrose, glucose, and fructose nondestructively in mango. Mature mangoes at two different temperatures (15 °C and 20 °C) were measured by NIR interactance (750–1088 nm wavelength region analyzed) over an 11-day period, starting when the fruit were underripe and extending to a few days past optimal ripeness. Partial least squares regression was used to develop models for SSC, individual sugar concentration, and the sum of the concentrations of the three sugars. Such analyses yielded calibration equations with R2 = 0.77 to 0.88 (SSC), 0.75 (sucrose), 0.67 (glucose), 0.70 (fructose), and 0.82 (sum); standard error of calibration = 0.56 to 0.90 (SSC), 10.0 (sucrose), 0.9 (glucose), 4.5 (fructose), and 10.4 (sum); and standard error of cross-validation = 0.93 to 1.10 (SSC), 15.6 (sucrose), 1.4 (glucose), 6.9 (fructose), and 16.8 (sum). When the SSC calibration was applied to a separate validation set, the standard error of performance ranged from 0.94% to 1.72%. These results suggest that for assessment of mango ripeness, NIR SSC calibrations are superior to the NIR calibrations for any of the individual sugars. This nondestructive technology can be used in the screening and grading of mangoes and in quality evaluation at wholesale and retail levels.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3