Author:
McConchie Robyn,Lang N. Suzanne
Abstract
During a 7-day dark postharvest period, Protea neriifolia R.Br. leaf blackening was significantly reduced on floral stems treated with a 24-h 20% sucrose pulse compared with continuous holding in a 0.5% sucrose vase solution or removal of the flowerhead. Leaf blackening on vegetative stems was similar to that on the 20% sucrose-pulsed floral stems. Leaf starch and sucrose concentration profiles demonstrated that stems with reduced leaf blackening maintained higher levels of those carbohydrates during the early postharvest period. Conversely, leaf starch and sucrose reserves were quickly depleted in stem treatments that resulted in early blackening symptoms. Starch concentrations in all treatments of stems dropped 70% to 82% within 24 h of harvest, suggesting that leaf blackening may be initiated during shipping. Ethylene production was not associated with leaf blackening in any treatment. Lipid peroxidation did not differ among floral treatments nor did it increase over the postharvest interval. Oxidized glutathione (GSSG) concentration increased only with the 20% pulsed stems and was not related to leaf blackening. After an initial decrease, leaf respiration rate was generally maintained regardless of treatment. Collectively, these data are consistent with the hypothesis that carbohydrate depletion is the initiating factor in leaf blackening and is accelerated by inflorescence sink demand. We suggest that membrane degradation does not necessarily precede leaf blackening.
Publisher
American Society for Horticultural Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献