Roles of Sorbitol and Sucrose in Growth and Respiration of `Encore' Peaches at the Three Developmental Stages

Author:

Bianco Riccardo Lo,Rieger Mark

Abstract

In peach [Prunus persica (L.) Batsch (Peach Group)], both sorbitol and sucrose are used for source to sink carbon (C) transport, yet their specific functions in fruit growth and development remain unclear. Growth rate (GR), respiration rate (R), carbohydrate content, and the activities of sorbitol dehydrogenase (SDH), sorbitol oxidase (SOX), sucrose synthase (SS), acid invertase (AI), and neutral invertase (NI) were determined in `Encore' peaches to study the specific functions of sorbitol and sucrose in each phase of fruit development (an early period of rapid cell division, a relatively inactive intermediate stage where endocarp (pit) hardening occurs, and a final swelling due to cell expansion). Fruit growth and respiration rates (mol C/fruit per day) were always positively correlated, but the growth coefficient (gc) relating them was significantly higher at cell division, when maintenance respiration (Rm) was nearly absent. Sorbitol and sucrose appeared to participate equally in growth and maintenance respiration. Contents of sorbitol and sucrose both correlated positively to GR, and their rates of accumulation increased from early to late growth stages in similar fashion. SDH activity was always positively correlated with sink strength and GR, but with R only at endocarp hardening (r = 0.632). SOX activity was also correlated with sink strength and GR in the early (r = 0.514 and 0.553) and late (r = 0.503 and 0.495) growth phases, but not at endocarp hardening, and was correlated with R in two of three growth phases. Among sucrose cleavage enzymes, AI activity was positively correlated with sink strength, GR, and R more strongly than the others (r = 0.51 to 0.80), but only in the cell division and cell expansion periods. SS activity was correlated with sink strength and R only at endocarp hardening, and NI activity was generally not correlated to sink strength, GR, or R. We conclude that sorbitol and sucrose play similar roles in fruit development, and the enzymes associated with their metabolism work in concert to produce the observed changes in growth and respiration.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3