Growth Response of Rose Geranium (Pelargonium graveolens L.) to Calcium:Magnesium Ratio, Magnetic Field, and Mycorrhizae

Author:

Nyakane Neo Edwin,Sedibe Moosa Mahmood,Markus Elisha

Abstract

The objective of this study was to evaluate the effects of the Ca:Mg ratio, magnetic field (MF), and mycorrhizal amendment on the yield and mineral composition of rose geranium. The experiment was structured as a 3 × 2 factorial experimental design, with three levels of the Ca:Mg ratio (2.40:6.78, 4.31:4.39, and 6.78:2.40 meq·L−1), 6.78 Ca:2.40 Mg meq·L−1 denoted by “High-Ca:Low-Mg,” equal proportion of Ca and Mg (4.31 Ca:4.39 Mg meq·L−1) represented by “EP-Ca:Mg,” and 2.32 Ca:6.38 Mg meq·L−1 denoted by “Low-Ca:High-Mg,” two levels of MF (no MF, denoted by “0 MF,” and 110 mT, denoted by “1 MF”) and split treatments of mycorrhizae (zero mycorrhizae denoted by “0 Myco,” and 20 mL mycorrhizae denoted by “1 Myco”) were used in this study. The results show that the plant height and branch dry mass were significantly (P < 0.05) affected by the Ca:Mg ratio. No significant effect of Ca:Mg ratio, MF, or mycorrhizae on the number of leaves, foliar mass, leaf dry mass, or yield was detected. Phosphorus, K, S, Fe, and B accumulation in the stem were unaffected, as were leaf N, P, K, Ca, S, Fe, B, and Cu. However, some agronomic attributes (plant height, number of branches, root length, and chlorophyll content) and mineral composition (Stem-N) were optimized when the 1 MF exposed nutrient solution was used with about equal proportions of Ca and Mg. This Ca:Mg ratio in the nutrient solution, together with the exposure of rose geranium plants to 1 MF, yielded positive results. The findings of this study can be applied to improve the production of rose geranium by enhancing the growth and mineral concentration of this crop.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3