How Sodium Chloride Concentration in the Nutrient Solution Influences the Mineral Composition of Tomato Leaves and Fruits

Author:

Giuffrida Francesco,Martorana Marianna,Leonardi Cherubino

Abstract

Tomato plants (Solanum lycopersicum L. cv. Durinta) were grown in an open soilless system to evaluate the effects of sodium chloride (NaCl) concentration in the nutrient solution on the ion compositions in plant tissues. The treatments were defined by a factorial combination of five NaCl concentrations and three leaves position/age and two fruits' position. Seedlings were transplanted in perlite and, 7 days after transplanting, five salinity treatments were imposed by adding 7, 21, 37, 49, or 64 mm of NaCl to the nutrient solutions; the final electrical conductivities were: 2.7, 4.5, 6.0, 7.5, and 8.6 dS·m−1, respectively. Increased salinity in the nutrient solution resulted in a reduction in tomato dry matter (from 534 to 375 g per plant) and in a linear increase in sodium (from 0.37% to 1.39%) and chloride (from 1.75% to 5.73%) in the leaves as well as in the fruit tissues (from 0.08% to 0.26% for sodium and from 0.63% to 1.34% for chloride). Leaf under the first cluster showed higher levels of sodium (+54%) and chloride (+32%) than leaf under the fifth cluster and old leaf accumulated more sodium (+15%) and chloride (+25%) than younger ones. The exposure of the tomato plants to increasing salinity resulted in a linear decline in nitrate (from 1.21% to 0.50%), total nitrogen (from 3.31% to 3.03%), sulphate (from 3.71% to 3.12%), and potassium leaves (from 2.76% to 1.51%); the potassium reduction was more evident in younger leaves than in older ones. All macronutrients, except calcium, decreased in the fruit tissues with increasing NaCl concentration in the nutrient solution. However, for phosphate, the reduction of the ion concentration was evident only in the fruit from the fifth cluster (–35%). The position of the fruit on the plant significantly affected the concentration of ion, which was higher for all determined ions in the fruit of the first truss. The levels of Na+ and Cl found in the plant tissue seem to confirm the hypothesis that the plant dry biomass reduction may also be traced to the toxicity of these ions as a consequence of this high concentration. On the other hand, although generally influenced by antagonism with sodium and chloride, the amount of main macronutrients did not reach deficiency levels that influenced the growth processes, except in the case of potassium.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3