Author:
Muramatsu Noboru,Sakurai Naoki,Yamamoto Ryoichi,Nevins Donald J.
Abstract
A nondestructive, acoustic method was applied to evaluate firmness of nectarines (Prunus persica Batch.), apricots (Prunus mume Sieb. et Succ.), plums (Prunus salicina Lindl.), and tomatoes (Lycopersicon esculentum Mill. `Beiju'). Sound with frequencies from 200 to 2000 Hz, generated by a miniature speaker attached to the fruit surface, was received by a small microphone attached to the opposite side. The signal was monitored by an oscilloscope. Sound frequency did not change during propagation in the fruit. However, as the microphone was moved along the circumference of the fruit, a phase shift in the received signal was observed. When the distance the microphone was displaced along the surface of the fruit corresponded to a shift of exactly one wavelength, the sound wavelength propagated within the fruit could be determined. The number of sound waves within the fruit over half its circumference was calculated as a function of this distance. Mature fruit propagated shorter wavelengths and consequently more sound waves than immature fruit, indicating that the sound velocity in the mature fruit was lower than in immature fruit. This relatively simple method for measuring lower frequency suggests that the sound velocity propagated through fruit can be determined without measuring the absolute velocity.
Publisher
American Society for Horticultural Science
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献